x^2=18/30

Simple and best practice solution for x^2=18/30 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2=18/30 equation:



x^2=18/30
We move all terms to the left:
x^2-(18/30)=0
We add all the numbers together, and all the variables
x^2-(+18/30)=0
We get rid of parentheses
x^2-18/30=0
We multiply all the terms by the denominator
x^2*30-18=0
Wy multiply elements
30x^2-18=0
a = 30; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·30·(-18)
Δ = 2160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2160}=\sqrt{144*15}=\sqrt{144}*\sqrt{15}=12\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{15}}{2*30}=\frac{0-12\sqrt{15}}{60} =-\frac{12\sqrt{15}}{60} =-\frac{\sqrt{15}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{15}}{2*30}=\frac{0+12\sqrt{15}}{60} =\frac{12\sqrt{15}}{60} =\frac{\sqrt{15}}{5} $

See similar equations:

| √4x-x+8=0 | | 2x=4x-3=11x+1 | | t/2=5.2 | | a=5/8 | | 3^2^x=27^4 | | 3^{2x}=27^4 | | 3^(2x)=27^3 | | 4x-11+3x=10 | | 2b^2+9b=-9 | | 7y-4=y+50 | | 26x+7=17x+1 | | 26x+7+17x+1=180 | | 3^(3x)=27^(4) | | 105+6x+21=180 | | 3^4x=27^4 | | 3/2x=24/4 | | 3^2x=6^4 | | 3^(2x)=27^(4) | | 3^(2x)=27^4 | | (8+1y)(4y+9)=0 | | 6x+21+105=180 | | 3^(2x)=531441 | | 3^2x=27^4 | | 6x+21=105 | | 3x+8=7+8x | | 30x+5+85=180 | | 30x+5=85 | | 4x2-16x=-15 | | (-0.4x^2)-x+50=0 | | 3(1-5d/2)+4d=5 | | 13x+x-4=15x | | X+×+×=3x |

Equations solver categories